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Abstract—Quantum-dot Cellular Automata (QCA) is an
emerging nanotechnology with remarkable performance and
energy efficiency. Computation and information transfer in QCA
are based on field forces rather than electric currents. As a
consequence, new strategies are required for design automation
approaches in order to cope with the arising challenges. One of
these challenges is the transport of information, which is affected
by two particularities of the QCA technology. First, information
flow in QCA is controlled by external clocks, and second, QCA is
a planar technology in which gates, as well as interconnections,
are mostly located in the same layer. The former demands proper
synchronization already during the circuit design phase, while
the latter results in high area costs for interconnections. This
work focuses on both constraints and discusses its impact on the
implementation of QCA circuits. Further, the concept of local and
global synchronicity in QCA circuits is explored. The obtained
results indicate that relaxing the global synchronicity constraint
can reduce design size by about 70% while the throughput
performance declines by similar values. Additionally, it can be
shown that the impact of interconnections in QCA, like wires,
fan-outs, and crossovers, is indeed substantial. That means, up
to 75% of the total area is occupied by interconnections.

I. INTRODUCTION

The Quantum-dot Cellular Automata (QCA) nanotechnol-
ogy offers a promising alternative to conventional circuit
technologies. In QCA, computations, and data transfer are
carried out via local fields between nanoscale devices, the so-
called QCA cells, that are arranged in patterned arrays [1].
Further, information is represented in terms of the polarization
of the cells. Theoretical and experimental results indicate
that QCA-based approaches have the potential to allow for
systems with highest processing performance and remarkably
low energy dissipation [2], [3]. Consequently, numerous con-
tributions on their physical realization have been made in the
past, e. g., molecular Quantum Cellular Automata [4], atomic
Quantum Cellular Automata [5] or nanomagnetic logic [6].
Many contributions to the progress of these technologies have
been made relatively recently, e. g., [7], [8].

QCA applies external clocks in order to prevent metastabil-
ity and to control the data flow among logic elements [9].

These clocks modify the state of QCA cells such that a
cell is in reset or can change or not its polarization, and
thus, its logic value. Commonly, four clocks, numbered from
1 to 4 and phase-shifted by 90 degrees, are applied. For
fabrication purposes, cells are usually grouped in a grid of
square-shaped clock zones such that all cells within a clock
zone are controlled by the same external clock [10], [11]. It
is important to note that correct data flow is only possible
between cells controlled by consecutively numbered clocks.
That means, cells controlled by clock 1 can solely pass their
data to cells controlled by clock 2, etc. and, finally, from clock
4 to clock 1.

Consequently, data are passed between cells in a pipeline-
like fashion controlled by the external clocks (more details
will be given in Section II). This behavior led to the common
assumption that QCA circuits must not employ only a local
but also global pipeline-like behavior, e. g., in [12], [13].
That means, it is assumed that all signal paths arriving at
the same logic gates must have equal length and that all
signals must always arrive at the respective logic gates in a
synchronized manner. This requirement puts some limitations
on the design automation of QCA circuits and demands some
design overhead, as will be discussed in Section III.

This design overhead also includes a more extensive use
of interconnections such as wires, fan-outs and crossovers. In
contrast to conventional logic design, these elements should
not be considered negligible in QCA, which is also discussed
in Section II-D. In fact, there is still less research on the actual
impact of interconnections in QCA circuits and whether it
should explicitly be considered in the future [3].

The intention of this work is to highlight the possibility to
design QCA circuits that do not possess a global pipeline-like
behavior and to explore the consequent impact on the intercon-
nections.1 Therefore, we introduce the basics of Quantum-dot
Cellular Automata (Sections II) before we discuss the aspect

1Preliminary versions of this work have been published before in [14], [15].



of synchronicity in QCA designs (Section III). Based on the
conclusions of this discussion we propose modifications to
existing QCA placement and routing algorithms (Section IV),
which is followed by a simulative comparison of QCA designs
that are fully synchronized or not and an exploration of the
actual impact of the interconnections (Section V). Finally, we
draw some conclusions (Section VI).

II. QUANTUM-DOT CELLULAR AUTOMATA

This section introduces the nanotechnology Quantum-dot
Cellular Automata (QCA) and discusses basic aspects of QCA
circuit design.

A. QCA states and logic gates
Quantum-dot Cellular Automata (QCA) are a field-coupled

nanotechnology that executes computations fundamentally dif-
ferent from current technologies. In QCA, information is
stored in terms of the polarization of nanosized cells and can
be propagated to adjacent cells using Coulomb forces.

The basic element of QCA is a cell that is usually composed
of four quantum dots which are able to confine an electric
charge [16], [17]. These quantum dots are arranged at the
corners of a square, such as depicted in Fig. 1a. Further, each
cell contains two free and mobile electrons, which are able to
tunnel between adjacent dots, while tunneling to the outside
of the cell is prevented by a potential barrier. The electrons
within a cell experience mutual repulsion due to Coulomb
interaction and, thus, tend to locate at opposite corners of the
square. Consequently, an isolated cell might assume one of
the two cell polarizations P = −1 and P = +1 as depicted
in Fig. 1a. This allows for an encoding of binary information
by identifying P = −1 with a binary 0 and P = +1 with a
binary 1.

Further, the polarizations of neighboring cells influence each
other—again by Coulomb interaction. This allows for the
design of wires as well as logic gates. For example, Fig. 1b
shows a QCA wire where a signal is propagated through
several cells from left to right by Coulomb interaction. Further,
Fig. 1c depicts an Inverter gate, where, again from left to
right, an input signal is copied to two paths, which are then
combined diagonally, such that the input value is inverted.
Finally, Fig. 1d shows a majority gate, where the output is
identically to the majority of the input signals. Further classical
logic operations such as AND and OR gates can be easily
derived from the majority gate by locking one of its inputs
to a binary 0 (leading to an AND) or binary 1 (leading to an
OR).

B. QCA clocking
In order to execute these and more complex logic opera-

tions, a dedicated clocking is required which, starting with
the initialization of the QCA cells, properly propagates in-
formation among the cells and avoids metastable states [18].
To this end, external clocks are employed which regulate the
intercellular tunneling barriers within a QCA cell such that the
cell can be polarized (i. e., tunneling is prevented) or not (i. e.,
electrons may tunnel between adjacent quantum dots within
the cell). Typically, a clock consists of four phases:

P = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

IN 2

IN 1

IN 3

OUT
OUTIN

Clock 
zone 1

Clock 
zone 2

Clock 
zone 3

Clock 
zone 4

Clock  of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

(a) QCA statesP = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

IN 2

IN 1

IN 3

OUT
OUTIN

Clock 
zone 1

Clock 
zone 2

Clock 
zone 3

Clock 
zone 4

Clock  of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

(b) QCA wire
P = +1

Binary 1
P = -1

Binary 0

Coulomb Interaction

b

a

c

f
fa

Clock 
zone 1

Clock 
zone 2

Clock 
zone 3

Clock 
zone 4

Clock  of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

a

b

f

Locked to 0-state

(c) QCA Inverter

P = +1
Binary 1

P = -1
Binary 0

Coulomb Interaction

b

a

c

f
fa

Clock 
zone 1

Clock 
zone 2

Clock 
zone 3

Clock 
zone 4

Clock  of zone 1

Clock of zone 2

Clock of zone 3

Clock of zone 4

1 2 3 4

4 3 2 1

3 4 1 2

2 1 4 3

a

b

f

Locked to 0-state

(d) QCA Majority

Fig. 1: QCA states and basic cells

• In the so-called relax phase, the cell is depolarized and
does not contain any information.

• During the following switch phase, the interdot barriers
are raised which forces the cell to polarize into one of
the two antipodal states (according to the polarization of
surrounding cells).

• In the following hold phase, the cell keeps its polarization
and may act as input for adjacent cells.

• During the final release phase, the interdot barriers are
lowered again thereby removing the previous polarization
of the cell.

Normally, four clocks shifted by 90 degrees are provided in
order to enable the propagation of information among cells [9].
Using these clocks, the data flow can be controlled by applying
appropriately shifted clock signals such that the cells which
shall pass their data are in the hold phase at the same time
when the cells that shall receive the data are in the switch
phase. For fabrication purposes, cells are usually grouped in
a grid of square-shaped clock zones such that all cells within
a clock zone are controlled by the same external clock [10].

Fig. 2 depicts an exemplary QCA wire that has the extension
of four clock zones. Moreover, possible locations for further
cells are indicated in gray in the most left clock zone. All QCA
cells within the same clock zone are controlled by the same
clock signal. Note that consecutive clock signals are shifted
by one phase. That means, if clock zone 1 is in the hold phase
then clock zone 2 will be in the switch phase, clock zone 3
will be in the relax phase and clock zone 4 will be the release
phase. In this state, cells in clock zone 2 polarize according
to the polarization of the adjacent cells in clock zone 1 while
cells in clock zone 3 and 4 are without polarization. During the
next clock phase, clock zone 2 changes to hold, while clock
zone 3 is in the switch phase. Consequently, data is passed
from zone 2 to 3 (and so on).

C. QCA Circuit Design

In order to design a QCA circuit, traditional design solutions
for logic synthesis of conventional circuits can be employed
for generation of initial netlists. Therefore, already available
realizations of typical gates such as Inverter, OR, AND, XOR,
etc. can be applied [19]. During the following placement and
routing (P&R), these gates must be arranged such that the
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Fig. 2: QCA wire with cells in four clock zones
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Fig. 3: USE clocking scheme

corresponding clocking is respected, i. e., data is properly
passed from one gate to another. To this end, usually a fix
arrangement of clock zones is imposed on a QCA layout [11],
[20].

There have been several proposals for clocking schemes,
of which 2DDWave [20] and USE (Universal, Scalable and
Efficient) [11] are just two representatives. Without loss of
generality, we apply the latter in this work, which is char-
acterized by a highly regular architecture and the ability to
utilize feedback paths, which renders USE suitable for design
automation of QCA circuits for a variety of netlists.

USE defines a grid of clock zones, which are arranged such
that all inner clock zones have two adjacent neighboring clock
zones that can provide data and two neighbors that can receive
data. The clock zones are numbered from 1 to 4, whereby
consecutive numbered zones have clock signals shifted by 90
degree. Fig. 3a depicts the concept of USE (each square is
a clock zone that contains 5 × 5 QCA cells, following the
proposal from [11]). Further, the arrows indicate the possible
data flow between adjacent clock zones.

Fig. 3b depicts the 2:1 MUX function f = as̄+bs placed on
a USE grid. Using conventional synthesis tools, the gate netlist
has to be mapped onto the USE grid such that the output of
one QCA structure, i. e., gate or wire, is always propagated to
the input of a QCA structure containing the next gate or wire.
In total, the resulting QCA circuit possesses design costs of
3× 3 clock zones which is equal to the dimension of 15× 15
QCA cells and a critical path of 5 clock zones (s→ f ).
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Fig. 4: QCA Interconnection elements. Same colored arrows
indicate related input and output signals.

D. Interconnections in QCA Circuits

Interconnections establish the connections amongst the logic
elements. Its placement is not a trivial task due to the fact
that QCA is mainly a planar technology, i. e., most of the
interconnection structures are fabricated in the same layer as
the actual logic. In general, one can distinguish three principle
structures, namely

• Wires, i. e., straight-forward or bent connections between
two QCA cells,

• 1-to-n Fan-outs, i. e., structures that copy one input to n
outputs, and

• Crossovers, i. e., crossings of two independent wires
(which can be planar or within a multi-layer structure).

Example 1. Fig. 4a shows an example for a straight wire.
An exemplary 1-to-2 fan-out, i. e., a fan-out with one input
and two outputs, is shown in Fig. 4b. Fig. 4c shows a planar
crossover where one signal is transported in the direction of
the rotated cells, while the second signal is routed in direction
of the non-rotated cells. Fig. 4d depicts a multi-layer crossover,
where via cells copy the signal to a second layer located above
the main layer. Note that cells in both layers are controlled
by the same clock and that in the very center there is also a
regular cell in the main layer (hidden by the via cell on top
of it).

Hence, interconnections are implemented by the very same
basic QCA cells as the elementary logic gates. Accordingly,
they have a significant impact on area and delay costs of at
least one clock zone. This is in strong contrast to conventional
logic synthesis (where the effects, e. g., of wires, fan-outs,
etc. with respect to area, depth, and energy dissipation are
usually neglected).

III. SYNCHRONICITY OF QCA CIRCUITS

In this section, we discuss the difference between global and
local synchronicity in QCA designs. Further, we show that—
contrary to the state of the art—global synchronicity is not a
mandatory constraint in QCA designs.



A. Global and Local Synchronicity

When considering synchronicity in QCA circuits, one has
to distinguish between local and global synchronicity. The
former means the data flow constraint, discussed in Section II,
which requires that data can only be transferred between cells
located in consecutive numbered clock zones. On the other
hand, global synchronicity refers to the global pipeline-like
behavior of QCA circuits.

The example depicted in Fig. 5 and Fig. 6 shall highlight
the differences. Note that, for the sake of simplicity but
without loss of generality, this example does not apply the
USE clocking. The circuit shown in Fig. 5 has two primary
inputs In1 and In2 and three arbitrary operations o1, o2 and o3,
with the first two having one input while the latter operation
possesses two inputs. Each of the three depicted cases differs
in the position of input In1. The curves in Fig. 6 relate to the
clock signals of all four zones, the input signals, that change
when clock 1 enters in switch phase (falling clock slope),
and the data at points A and B, which both contain inputs
of operation o3.

In all three cases, local synchronicity is guaranteed. That
means all data flow is only between cells in consecutive
numbered clock zones. Further, in case 1 global synchronicity
is given, i. e., operation o3 receives related input signals. This
is also true for case 2, even though both In1 are connected
with different clock zones. However, the distance between both
is less than 4 clock zones (see also the indicated red line).
Consequently, in the following clock zone 1 all data from
In1 and In2 are synchronized again, because all clock zones
with number 1 change into switch phase at the same time. In
contrast, case 3 misses the global synchronicity, because data
of input In1 arrive one clock cycle before the related data of
input In2. That means, in this case, operation o3 processes
input data that do not belong together.

B. Unsynchronized QCA Circuits

A fundamental characteristic of globally synchronized de-
signs is that new data can be applied to the primary inputs
of the circuit in each clock cycle. After the first input data
passed the circuit, correspondingly new results arrive at the
circuit’s primary outputs in each clock cycle—resulting in a
circuit throughput of 1. Furthermore, a globally synchronized
circuit does not require synchronization elements like latches,
as, by definition, all related data are always synchronized.

However, in contrast to many related statements in the
literature, e. g., in [12], [13], global synchronicity (GS) is not
a mandatory constraint in QCA circuits [21]. For example,
the circuit depicted in Fig. 5c misses GS, because data from
both inputs are not arriving at the same time at operation o3.
A common solution to this problem would be the relocation
of In1 or In2 such that paths have equal lengths, as, e. g. in
Fig. 5a. However, this usually comes at high costs in terms
of area [3]. Instead, we propose to reduce the frequency with
which new input data are applied. That means for the given
example, data connected at In1 and In2 must be kept stable for
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Fig. 5: QCA circuit possessing and missing the global syn-
chronicity. The red line indicates the limit until where In1
could be placed such that paths In1→o3 and In2→o3 are
synchronous. For the sake of simplicity, this example is not
using USE.

two clock cycles2—leading to a reduced throughput of 1/2.
On the other hand, this approach allows for the reduction of
area costs, latency, and design complexity. Consequently, there
is a trade-off between performance and area costs.

An important parameter of globally unsynchronized QCA
circuits is the frequency with which new input data can be
sent to the circuit. This frequency depends on the maximum
difference between the arrival times of all input signals of any
gate of the QCA circuit. Again, since signal paths starting
at different primary inputs but leading to the same gate, can
be of different length in the circuit (as demonstrated above),
information applied to the primary inputs in the same time
step, do not necessarily arrive at that very gate at the same
time step. To preserve functionality nonetheless, i.e. to assure

2This feature requires additional clocks with clock periods that are multiples
of the four basic clocks. It should be noted that adding these clocks can be
done with only a low increase in design costs. First, the additional clocks can
be generated by the same circuits applied for the generation of the four basic
clocks [9], [22]. Second, the distribution of the clocks signals can be done by
existing wire routing technologies, as shown in and [20], [23]
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Fig. 6: Curves of clock zone signals, inputs and data at points
A and B for all three cases shown in Fig. 5

that designs are not asynchronous, it must be assured for all
gates that their inputs are synchronous for at least one clock
cycle before new inputs arrive. As mentioned above, this is
done by using additional clocks with clock periods that are
multiples of the periods of the four basic clocks.

The following example shall detail the related analysis.
Fig. 7a depicts an exemplary QCA circuit that does not possess
global synchronicity. Several of the operations oX have two
inputs that have diverging arrival times. In detail, the inputs
of o6 arrive after 1 and 9 clock phases, the inputs of o8 after
10 and 14 clock phases, and the inputs of o9 after 12 and 16
clock phases. As each clock cycle lasts for 4 clock phases,
the maximum difference in terms of clock cycles results from
the ceiling division by 4. This in case of, e. g., o6 means
d9/4e − d1/4e = 2 is the maximum difference in terms of
clock cycles. Analogously, for, e. g., o8 and o9 it is 1. Hence,
both inputs In1 and In2 must not change for two additional
clock cycles in order to assure correct operation. Fig. 7b
depicts the curves of the clock in clock zones 1, the inputs
and the signals at points A and B, both highlighted in Fig. 7a.
One can note that only at the third clock cycle, operation o6
has synchronized inputs, i. e., its both input signals (In1-1 and
In2-1) been sent at the same time.

The presented circuit has a latency of 16 clock phases, i. e.,
4 clock cycles. If the input frequency is reduced to 1/3 of the
clock frequency then the first correct results will arrive after 6
clock cycles. Next, every three clock cycle new correct outputs
will be available.
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Fig. 7: Unsynchronized QCA circuit

IV. MODIFIED PLACE AND ROUTE ALGORITHMS

In Electronic Design Automation, the placement and routing
(P&R) generates a final layout starting from a gate-level
netlist. Here, placement means the location of gates on the
grid, while routing refers to the connection of these gates via
wires. In this section, we present a heuristic and an exact QCA
P&R algorithm, that has been modified such that it is possible
to relax the GS constraint.

A. Heuristic Algorithm

In QCA, the P&R is NP-complete leading to high computa-
tion costs even for small circuits [24]–[27]. Hence, we propose
in [28] a P&R algorithm based on a divide-and-conquer
strategy that notably reduces the complexity. The presented
P&R algorithm applies the USE clocking scheme but can be
easily adapted for other ones too. The approach starts with
a decomposition of the gate-level graph that is guided by
reconvergent paths. Next, for each partition, the corresponding
QCA layout is generated. In the final step, the entire circuit is
rebuilt by aligning the nodes that overlap partitions, followed
by a routing of all inter-subgraphs wires. In the case of the
latter, the algorithm assures that all interconnections between
two graph depth levels are locally and globally synchronized.

The example in Fig. 8 demonstrates the principal steps
of the P&R algorithm presented in [28]. First, the circuit is
represented as a graph where each node is a gate (see Fig. 8a).
Next, a distance is defined between each level. This is followed
by the placement of the nodes; level by level starting from the
primary outputs (see Fig. 8b). In the depicted example, the
inter-level distance d0 between node o1, which connects to
the output, and o2 is 1. Fig. 8c illustrates the corresponding
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(a) Gate-level sub-graph with syn-
chronized inter-level distances
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(b) Corresponding layout
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Fig. 8: Example for unmodified P&R algorithm assuring
global synchronicity

differences of each clock zone to the clock zone containing
node o1. As one can see, there are only two possible positions
for node o2 if the distance to o1 shall be 1. In this example,
the algorithm chooses the right neighboring clock zone of o1.
Further, the distance d1 between the nodes in level 1 and
level 2 has been defined with 3. Note that for the distance
between nodes o1 and o3 this sums up to 4. Hence, the
algorithm tries to place the nodes o4 and o5 such that both
have a distance of 3 to node o2, while o3 is placed such
that it has a distance of 4 to node o1. In order to improve
the results, the proposed P&R algorithm varies the inter-level
distances d0, d1, . . . , dn−1 with 1 ≤ di < max(4, n), where n
means the graph depth. However, it is assured that the distance
between nodes in same level to nodes in higher level is always
the same, i. e., global synchronicity is given for all tries.

In order to relax the GS constraint, we modified the al-
gorithm such that each edge of the graph possesses its own
distance. This enables that nodes in the same level can have
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(a) Graph for unmodified
P&R algorithm (with GS)
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(b) Layout of unmodified P&R algorithm
(with GS constraint)
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(c) Graph for modified
P&R algorithm (no GS)
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(d) Layout of modified P&R algo-
rithm (no GS)

Fig. 9: Example comparing of graphs and resulting layouts
for P&R assuring and ignored global synchronicity (GS)
constraint. The numbers on the edges indicate the distances
between nodes.

a different distance to nodes in a higher level. Nevertheless,
distances must be chosen such that local synchronicity is
assured.

The example depicted in Fig. 9 shall highlight these modifi-
cations. Fig. 9a and Fig. 9b show the graph and the respective
layout if global synchronicity (GS) is assured. The numbers at
the edges in Fig. 9a indicate the distance between the nodes.
As one can see, these numbers follow the definitions of the
inter-level distances, also shown in the figure. Consequently,
the distances between nodes o4, o5 and o6 to node o1 is
always 8. In contrast, Fig. 9c illustrates the same graph, but
with new distances. As one can see, the distance between
nodes in same level to a node in a different level is not always
the same. For example, the distance between o4 and o1 reduces
to 7, and it changes to 6 between o5, o6 and o1. Consequently,
the maximum delay, i. e., its latency, of the circuit has been
reduced from 8 to 7. Furthermore, the layout can be more
compact, as Fig. 9d indicates. Here, the grid layout could
be reduced from 18 clock zones to 15, while the number of
occupied clock zones reduced from 16 to 13.



B. Exact Algorithm
In [25], the authors presented an automatic and exact design

method for QCA circuits. In contrast to heuristic or manual
approaches, this method guarantees the satisfaction of desired
design objectives and physical constraints. For this purpose, a
reasoning engine (e. g., an SMT solver [29]) is used.

Reasoning engines can be applied to find solutions to
decision problems. They use effective heuristics to traverse
search spaces in smart ways. Even though they cannot break
complexity bounds, in practice, they are often able to come up
with solutions to known hard problems. From an application
view, a reasoning engine can be seen as a black box that re-
ceives problem formulations and then generates valid solutions
to these problems or proves that no such solution exists.

Thus, the main challenges are the definition of an adequate
formal description of the design constraints and the translation
of the obtained assignments to a solution of the original
problem instance. In this section, we give an intuitive idea
about how we formulated the QCA P&R problem. A detailed
description of the quantifier-free first-order logic representa-
tion can be found in [25].

When working with decision engines, one first defines the
search space which is the set of all possible solutions to a
problem. The search space is then restricted by constraints
until only valid solutions remain. As the input to the P&R
problem is a netlist and a USE grid, the search space is equal
to all mappings from the netlist elements to the grid tiles.
Intuitively formulated, every gate and every wire can be placed
on any tile. This formulation is then extended by constraints
which contain but are not limited to

1) every gate has to be placed exactly once,
2) wires must only be placed between the gates they

connect,
3) tiles can be left empty but there can only be one gate

or alternatively up to two wires per tile,
4) consecutive gates/wires have to be placed in consecu-

tively numbered clock zones,
5) all elements have to be placed so that the data flow on

the grid is equivalent to the input netlist.
In order to satisfy the GS constraint, it must be additionally

enforced that all paths leading to any multi-input gate must
have the same length on the grid. If on the other hand,
a designer is fine with a globally unsynchronized circuit,
i. e., with a relaxed GS requirement which leads to lower
throughput but presumably smaller circuit area, no additional
formal constraint needs to be applied.

V. EXPERIMENTAL RESULTS

This section compares the design costs for selected bench-
mark circuits [30]–[32] and circuits generated by the ABC
synthesis tool [33] if placed and routed with and without global
synchronicity.

The obtained results for the heuristic algorithm presented
in Section IV-A are listed in Tab. I, while Tab. II shows
the results for the exact algorithm discussed in Section IV-B.
Please note that due to time-out constraints only a limited
number of benchmarks could be run with the exact algorithm.

In detail, the run-times of the heuristic approach were in the
range between several seconds to minutes, while the exact
approach required for its execution from several minutes to
hours. Furthermore, results of both algorithms are not directly
comparable, because the heuristic algorithm applies parallel
wires within the same clock zone, while the exact one supports
solely single wires. This is an intended difference, emphasizing
the main motivation to study the impact of synchronicity for
different kinds of algorithms.

In both tables, the columns Gates refer to the number of
elements to place which are not wires. Since, the input to
both algorithms is an AIG, the number of gates is equal to the
number of AIG nodes plus the number of complemented edges
plus the number of fan-outs.3 Grid area indicate the complete
area of the generated QCA grid, including empty clock zones,
while the columns Occupied clk-zones refer solely to the clock
zones that contain QCA cells. The columns Latency report
the length of the longest path in terms of clock zones and the
column Throughput lists the throughput of the designs without
global synchronicity in comparison to its fully synchronized
counterpart. Finally, the column Int. lists the number of clock
zones that contain interconnections, like wires, 1-to-n fan-outs
and crossovers.

One can note that disregarding global synchronicity can
lead to reduction of occupied clock zones and latency, but
not in all cases (e. g., FA-MAJ and B1 r2 for the heuristic
algorithm). This reduction, though, comes at the costs of a
declining throughput. Further, in most cases the reduction of
occupied clock zones and area is comparable, with exception
of the benchmark t using the heuristic algorithm. Here, the
grid area increases while the number of occupied clock zones
is reduced. Thus, the qualification of this result depends on
the possibility to use the unoccupied area for further circuits,
which is, e. g., the case of both presented P&R algorithms.

A. Evaluation of impact of synchronization constraint

Figs. 10 and 11 compare the reduction of occupied clock
zones, latency and throughput if global synchronicity is ig-
nored for the heuristic as well as the exact algorithm. Results
indicate that disregarding global synchronicity can reduce the
occupied area by up to 67% (clpl for the heuristic algorithm)
and in average by 33% for the heuristic algorithm and 19%
for the exact one. An exception is circuit b1 r2, for which on
increase of the occupied area can be observed when using the
heuristic algorithm and ignoring global synchronicity.

In case of the latency, reductions of up to 25% (clpl
and t for the heuristic algorithm) and in average by 13%
for both algorithms can be reported. However, the heuristic
algorithm could improve the latency only in about 50% of all
benchmarks, while the exact one could enhance the latency in
3 out of 4 cases.

3Even though QCA is a Majority-based technology, it is known that MIGs
are less suitable for placement and routing than AIGs. This is mostly due to
the fact that a Majority gate in QCA needs to route 4 wires from 4 different
sides while an AND/OR only needs to route 3 wires. Therefore, a Majority
gate blocks a lot of circuit area with just wiring. Furthermore, floor plans get
less area efficient as well.



0%

20%

40%

60%

80%

R
e
d
u
ct
io
n

Heuristic Algorithm

Occ. clock zones Latency Throughput

0%

20%

40%

60%

80%

W
ir
e
 o
cc
u
p
an

cy

Heuristic Algorithm

Synchronized Not synchronized

Fig. 10: Reduction of occupied clock zones, latency and
throughput if global synchronicity is ignored using the heuris-
tic algorithm
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Fig. 11: Reduction of occupied clock zones, latency and
throughput if global synchronicity is ignored using the exact
algorithm

In contrast, the throughput declined by up to 75% (clpl for
the heuristic algorithm), i. e., factor 4, and in average by 50%
for the heuristic algorithm and 25% for the exact one. In most
cases, the value for throughput reduction is comparable to area
reduction. However, in three cases, namely t and FA-AOIG for
the heuristic algorithm and newtag for the exact algorithm,
there is a strong discrepancy between area and throughput
reduction. Hence, it is up to the designer to decide which of
the parameters he wants to prioritize.

B. Evaluation of impact of interconnections

Figs. 12 and 13 compare the relation between the total
number of occupied clock zones and clock zones containing
interconnections for both algorithms and for synchronized
and unsynchronized designs. Results indicate that if using the
synchronization constrain interconnections occupy up to 74%
of all used clock zones (c17 for the exact algorithm), while the
average occupancy of the interconnections is about 65% for
both algorithms. If the synchronization constraint is ignored
the maximum number remains similar, i. e., 72% (FA-MAJ for
the heuristic algorithm), while the average values improve to
46% for the heuristic algorithm and 59% for the exact one.

A special case is the circuit clpl, which contains no wires if
global synchronicity is ignored. This results from the specific
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Fig. 12: Relation between total number of occupied clock
zones and clock zones containing interconnections using the
heuristic algorithm
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Fig. 13: Relation between total number of occupied clock
zones and clock zones containing interconnections using the
exact algorithm

architecture of the circuit, which consists solely of a chain of
two-input gates that have a primary input each. Consequently,
the gates could be placed side-by-side as a long line.

In summary, these results clearly indicate that interconnec-
tions usually have a very high impact on the area costs of
QCA designs and must not be ignored.

VI. CONCLUSION

Quantum-dot Cellular Automata (QCA) is a promising
nanotechnology with remarkable characteristics in terms of
performance and energy consumption. QCA apply external
clocks for control of information transfer such that circuits
can have a pipeline-like behavior. We revealed in this work
that, in contrast to what is common believe, this behavior
is not a mandatory constraint for QCA circuits. Therefore,
we discussed the differences between local and global syn-
chronicity (GS) in QCA circuits. Further, we showed how
placement and routing algorithm can be modified in order
to allow to consider or not the GS constraint. Simulation
results for selected benchmarks indicate that relaxing the GS
constraint can lead to area reductions of about 70%, while
the throughput reduces in similar range. Further, the latency
could be improved by up to 25%. Hence, designers have a
further degree of freedom in order to explore the full potential



TABLE I: Simulation Results for heuristic Algorithm (presented in Section IV-A)

Synchronized Unsynchronized

Benchmark Gates Inputs Outputs Grid area Occupied
clk-zones Latency Int.a Grid area Occupied

clk-zones Latency Throughput Int.a

c17 12 5 2 56 34 8 22 35 23 6 0.50 11
t 15 5 2 49 38 8 23 56 28 6 0.50 13
newtag 20 8 1 80 44 10 24 48 26 8 0.33 6
CLPL 21 11 5 132 64 11 43 33 21 10 0.25 0
FA-AOIG 12 3 2 56 36 12 24 36 26 10 0.33 14
FA-MAJ 8 3 1 35 29 10 21 35 29 10 1.00 21
B1 r2 16 3 4 60 44 11 28 96 50 11 1.00 34
XOR5 r 37 5 1 252 252 24 86 140 85 24 0.25 48
XOR5 r1 31 5 1 195 97 22 66 160 58 18 0.33 27

a Interconnections (wires, fan-outs and crossovers)

TABLE II: Simulation Results for exact Algorithm (presented in Section IV-B)

Synchronized Unsynchronized

Benchmark Gates Inputs Outputs Grid area Occupied
clk-zones Latency Int.a Grid area Occupied

clk-zones Latency Throughput Int.a

c17 12 5 2 48 42 18 31 35 29 14 0.50 18
t 15 5 2 40 33 11 21 30 26 11 1.00 14
newtag 20 8 1 60 49 20 32 49 40 16 0.50 23
B1 r2 16 3 4 54 46 22 29 50 44 20 1.00 27

a Interconnections (wires, fan-outs and crossovers)

of the QCA technology. Additionally, we could show that
interconnection heavily affect the area costs. In case of the
analyzed benchmarks, in average nearly 60% of the total
design area is occupied by interconnection like wires, fan-outs
and crossovers. That means, future design methods for QCA
circuits should focus on this factor, requiring a rethinking of
how interconnections are considered on all design layers.
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